Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 292, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632554

RESUMO

Spike length (SL) is one of the most important agronomic traits affecting yield potential and stability in wheat. In this study, a major stable quantitative trait locus (QTL) for SL, i.e., qSl-2B, was detected in multiple environments in a recombinant inbred line (RIL) mapping population, KJ-RILs, derived from a cross between Kenong 9204 (KN9204) and Jing 411 (J411). The qSl-2B QTL was mapped to the 60.06-73.06 Mb region on chromosome 2B and could be identified in multiple mapping populations. An InDel molecular marker in the target region was developed based on a sequence analysis of the two parents. To further clarify the breeding use potential of qSl-2B, we analyzed its genetic effects and breeding selection effect using both the KJ-RIL population and a natural mapping population, which consisted of 316 breeding varieties/advanced lines. The results showed that the qSl-2B alleles from KN9204 showed inconsistent genetic effects on SL in the two mapping populations. Moreover, in the KJ-RILs population, the additive effects analysis of qSl-2B showed that additive effect was higher when both qSl-2D and qSl-5A harbor negative alleles under LN and HN. In China, a moderate selection utilization rate for qSl-2B was found in the Huanghuai winter wheat area and the selective utilization rate for qSl-2B continues to increase. The above findings provided a foundation for the genetic improvement of wheat SL in the future via molecular breeding strategies.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Triticum/genética , Ligação Genética , Melhoramento Vegetal , Fenótipo
2.
Theor Appl Genet ; 137(4): 87, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512468

RESUMO

KEY MESSAGE: A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for tiller-related traits were reported, and the candidate genes underlying qMtn-KJ-5D, a novel major and stable QTL for maximum tiller number, were characterized. Tiller-related traits play an important role in determining the yield potential of wheat. Therefore, it is important to elucidate the genetic basis for tiller number when attempting to use genetic improvement as a tool for enhancing wheat yields. In this study, a quantitative trait locus (QTL) analysis of three tiller-related traits was performed on the recombinant inbred lines (RILs) of a mapping population, referred to as KJ-RILs, that was derived from a cross between the Kenong 9204 (KN9204) and Jing 411 (J411) lines. A total of 38 putative additive QTLs and 55 pairwise putative epistatic QTLs for spike number per plant (SNPP), maximum tiller number (MTN), and ear-bearing tiller rate (EBTR) were detected in eight different environments. Among these QTLs with additive effects, three major and stable QTLs were first documented herein. Almost all but two pairwise epistatic QTLs showed minor interaction effects accounting for no more than 3.0% of the phenotypic variance. The genetic effects of two colocated major and stable QTLs, i.e., qSnpp-KJ-5D.1 and qMtn-KJ-5D, for yield-related traits were characterized. The breeding selection effect of the beneficial allele for the two QTLs was characterized, and its genetic effects on yield-related traits were evaluated. The candidate genes underlying qMtn-KJ-5D were predicted based on multi-omics data, and TraesKN5D01HG00080 was identified as a likely candidate gene. Overall, our results will help elucidate the genetic architecture of tiller-related traits and can be used to develop novel wheat varieties with high yields.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Mapeamento Cromossômico/métodos , Ligação Genética , Melhoramento Vegetal , Fenótipo
3.
Theor Appl Genet ; 137(3): 67, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441674

RESUMO

KEY MESSAGE: A major stable QTL, qKl-1BL, for kernel length of wheat was narrowed down to a 2.04-Mb interval on chromosome 1BL; the candidate genes were predicated and the genetic effects on yield-related traits were characterized. As a key factor influencing kernel weight, wheat kernel shape is closely related to yield formation, and in turn affects both wheat processing quality and market value. Fine mapping of the major quantitative trait loci (QTL) for kernel shape could provide genetic resources and a theoretical basis for the genetic improvement of wheat yield-related traits. In this study, a major QTL for kernel length (KL) on 1BL, named qKl-1BL, was identified from the recombinant inbred lines (RIL) in multiple environments based on the genetic map and physical map, with 4.76-21.15% of the phenotypic variation explained. To fine map qKl-1BL, the map-based cloning strategy was used. By using developed InDel markers, the near-isogenic line (NIL) pairs and eight key recombinants were identified from a segregating population containing 3621 individuals derived from residual heterozygous lines (RHLs) self-crossing. In combination with phenotype identification, qKl-1BL was finely positioned into a 2.04-Mb interval, KN1B:698.15-700.19 Mb, with eight differentially expressed genes enriched at the key period of kernel elongation. Based on transcriptome analysis and functional annotation information, two candidate genes for qKl-1BL controlling kernel elongation were identified. Additionally, genetic effect analysis showed that the superior allele of qKl-1BL from Jing411 could increase KL, thousand kernel weight (TKW), and yield per plant (YPP) significantly, as well as kernel bulk density and stability time. Taken together, this study identified a QTL interval for controlling kernel length with two possible candidate genes, which provides an important basis for qKl-1BL cloning, functional analysis, and application in molecular breeding programs.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Triticum/genética , Mapeamento Cromossômico , Alelos , Embaralhamento de DNA
4.
Nat Commun ; 14(1): 8238, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086830

RESUMO

The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.


Assuntos
Nitrogênio , Triticum , Triticum/metabolismo , Nitrogênio/metabolismo , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Melhoramento Vegetal
5.
Theor Appl Genet ; 136(10): 211, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737910

RESUMO

KEY MESSAGE: A major stable QTL for kernel number per spike was narrowed down to a 2.19-Mb region containing two potential candidate genes, and its effects on yield-related traits were characterized. Kernel number per spike (KNPS) in wheat is a key yield component. Dissection and characterization of major stable quantitative trait loci (QTLs) for KNPS would be of considerable value for the genetic improvement of yield potential using molecular breeding technology. We had previously reported a major stable QTL controlling KNPS, qKnps-4A. In the current study, primary fine-mapping analysis, based on the primary mapping population, located qKnps-4A to an interval of approximately 6.8-Mb from 649.0 to 655.8 Mb on chromosome 4A refering to 'Kenong 9204' genome. Further fine-mapping analysis based on a secondary mapping population narrowed qKnps-4A to an approximately 2.19-Mb interval from 653.72 to 655.91 Mb. Transcriptome sequencing, gene function annotation analysis and homologous gene related reports showed that TraesKN4A01HG38570 and TraesKN4A01HG38590 were most likely to be candidate genes of qKnps-4A. Phenotypic analysis based on paired near-isogenic lines in the target region showed that qKnps-4A increased KNPS mainly by increasing the number of central florets per spike. We also evaluated the effects of qKnps-4A on other yield-related traits. Moreover, we dissected the QTL cluster of qKnps-4A and qTkw-4A and proved that the phenotypic effects were probably due to close linkage of two or more genes rather than pleiotropic effects of a single gene. This study provides molecular marker resource for wheat molecular breeding designed to improve yield potential, and lay the foundation for gene functional analysis of qKnps-4A.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Embaralhamento de DNA , Anotação de Sequência Molecular , Fenótipo
6.
Plant Commun ; 4(4): 100593, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-36945776

RESUMO

A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation. However, the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding. In this study, we created a library for KN9204, a popular wheat variety in northern China, with a reference genome, transcriptome, and epigenome of different tissues, using ethyl methyl sulfonate (EMS) mutagenesis. This library contains a vast developmental diversity of critical tissues and transition stages. Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79% of coding genes had mutations, and each line had an average of 1383 EMS-type SNPs. We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1, Q, TaTB1, and WFZP. We tested 100 lines with severe mutations in 80 NAC transcription factors (TFs) under drought and salinity stress and identified 13 lines with altered sensitivity. Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress, including SNAC1, DREB2B, CML16, and ZFP182, factors known to respond to abiotic stress. Thus, we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat.


Assuntos
Genômica , Triticum , Triticum/genética , Mutação , Mutagênese , Fenótipo
8.
J Pineal Res ; 74(2): e12841, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36396897

RESUMO

Melatonin (Mel) is a multifunctional biomolecule found in both animals and plants. In plants, the biosynthesis of Mel from tryptophan (Trp) has been delineated to comprise of four consecutive reactions. However, while the genes encoding these enzymes in rice are well characterized no systematic evaluation of the overall pathway has, as yet, been published for wheat. In the current study, the relative contents of six Mel-pathway-intermediates including Trp, tryptamine (Trm), serotonin (Ser), 5-methoxy tryptamine (5M-Trm), N-acetyl serotonin (NAS) and Mel, were determined in 24 independent tissues spanning the lifetime of wheat. These studies indicated that Trp was the most abundant among the six metabolites, followed by Trm and Ser. Next, the candidate genes expressing key enzymes involved in the Mel pathway were explored by means of metabolite-based genome-wide association study (mGWAS), wherein two TDC genes, a T5H gene and one SNAT gene were identified as being important for the accumulation of Mel pathway metabolites. Moreover, a 463-bp insertion within the T5H gene was discovered that may be responsible for variation in Ser content. Finally, a ASMT gene was found via sequence alignment against its rice homolog. Validations of these candidate genes were performed by in vitro enzymatic reactions using proteins purified following recombinant expression in Escherichia coli, transient gene expression in tobacco, and transgenic approaches in wheat. Our results thus provide the first comprehensive investigation into the Mel pathway metabolites, and a swift candidate gene identification via forward-genetics strategies, in common wheat.


Assuntos
Melatonina , Animais , Melatonina/metabolismo , Triticum/genética , Triticum/metabolismo , Serotonina/metabolismo , Estudo de Associação Genômica Ampla , Triptaminas , Plantas/metabolismo , Triptofano/metabolismo
9.
Mol Plant ; 15(9): 1440-1456, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35864747

RESUMO

Studying the regulatory mechanisms that drive nitrogen-use efficiency (NUE) in crops is important for sustainable agriculture and environmental protection. In this study, we generated a high-quality genome assembly for the high-NUE wheat cultivar Kenong 9204 and systematically analyzed genes related to nitrogen uptake and metabolism. By comparative analyses, we found that the high-affinity nitrate transporter gene family had expanded in Triticeae. Further studies showed that subsequent functional differentiation endowed the expanded family members with saline inducibility, providing a genetic basis for improving the adaptability of wheat to nitrogen deficiency in various habitats. To explore the genetic and molecular mechanisms of high NUE, we compared genomic and transcriptomic data from the high-NUE cultivar Kenong 9204 (KN9204) and the low-NUE cultivar Jing 411 and quantified their nitrogen accumulation under high- and low-nitrogen conditions. Compared with Jing 411, KN9204 absorbed significantly more nitrogen at the reproductive stage after shooting and accumulated it in the shoots and seeds. Transcriptome data analysis revealed that nitrogen deficiency clearly suppressed the expression of genes related to cell division in the young spike of Jing 411, whereas this suppression of gene expression was much lower in KN9204. In addition, KN9204 maintained relatively high expression of NPF genes for a longer time than Jing 411 during seed maturity. Physiological and transcriptome data revealed that KN9204 was more tolerant of nitrogen deficiency than Jing 411, especially at the reproductive stage. The high NUE of KN9204 is an integrated effect controlled at different levels. Taken together, our data provide new insights into the molecular mechanisms of NUE and important gene resources for improving wheat cultivars with a higher NUE trait.


Assuntos
Nitrogênio , Triticum , Perfilação da Expressão Gênica , Genômica , Nitrogênio/metabolismo , Transcriptoma/genética , Triticum/genética , Triticum/metabolismo
10.
Theor Appl Genet ; 135(8): 2907-2923, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35794218

RESUMO

KEY MESSAGE: TaD11-2A affects grain size and root length and its natural variations are associated with significant differences in yield-related traits in wheat. Brassinosteroids (BRs) control many important agronomic traits and therefore the manipulation of BR components could improve crop productivity and performance. However, the potential effects of BR-related genes on yield-related traits and stress tolerance in wheat (Triticum aestivum L.) remain poorly understood. Here, we identified TaD11 genes in wheat (rice D11 orthologs) that encoded enzymes involved in BR biosynthesis. TaD11 genes were highly expressed in roots (Zadoks scale: Z11) and grains (Z75), while expression was significantly suppressed by exogenous BR (24-epiBL). Ectopic expression of TaD11-2A rescued the abnormal panicle structure and plant height (PH) of the clustered primary branch 1 (cpb1) mutant, and also increased endogenous BR levels, resulting in improved grain yields and grain quality in rice. The tad11-2a-1 mutant displayed dwarfism, smaller grains, sensitivity to 24-epiBL, and reduced endogenous BR contents. Natural variations in TaD11-2A were associated with significant differences in yield-related traits, including PH, grain width, 1000-grain weight, and grain yield per plant, and its favorable haplotype, TaD11-2A-HapI was subjected to positive selection during wheat breeding. Additionally, TaD11-2A influenced root length and salt tolerance in rice and wheat at seedling stages. These results indicated the important role of BR TaD11 biosynthetic genes in controlling grain size and root length, and also highlighted their potential in the molecular biological analysis of wheat.


Assuntos
Oryza , Triticum , Brassinosteroides , Grão Comestível/genética , Grão Comestível/metabolismo , Regulação da Expressão Gênica de Plantas , Haplótipos , Oryza/genética , Oryza/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Triticum/genética , Triticum/metabolismo
11.
Theor Appl Genet ; 135(7): 2531-2541, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35680741

RESUMO

KEY MESSAGE: A major stable QTL for flag leaf width was narrowed down to 2.5 Mb region containing two predicated putative candidate genes, and its effects on yield-related traits was characterized. Flag leaf width (FLW) is important to production in wheat. In a previous study, a major quantitative trait locus for FLW (QFlw-5B) was detected on chromosome 5B, within an interval of 6.5 cM flanked by the markers of XwPt-9103 and Xbarc142, using a mapping population of recombinant inbred lines derived from a cross between Kenong9204 (KN9204) and Jing411 (J411) (denoted as KJ-RILs). The aim of this study was to fine map QFlw-5B and characterize its genetic effects on yield-related traits. Multiple near-isogenic lines (NILs) were developed using one residual heterozygous line for QFlw-5B. Five recombinants for QFlw-5B were identified, and its location was narrowed to a 2.5 Mb region based on combined phenotypic and genotypic data analysis. This region contained 27 predicted genes, two of which were considered as the most likely candidate genes for QFlw-5B. The FLW of NIL-KN9204 was significantly higher than that of NIL-J411 across all the tested environments. Meanwhile, significant increases in plant height, grain width and 1000-grain weight were observed in NIL-KN9204 compared with that in NIL-J411. These results indicate that QFlw-5B has great potential for marker-assisted selection in wheat breeding programs designed to improve both plant architecture and yield. This study also provides a basis for the map-based cloning of QFlw-5B.


Assuntos
Locos de Características Quantitativas , Triticum , Mapeamento Cromossômico , Fenótipo , Melhoramento Vegetal , Folhas de Planta/genética , Triticum/genética
12.
Front Plant Sci ; 12: 745411, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858454

RESUMO

Flowering is central to the transformation of plants from vegetative growth to reproductive growth. The circadian clock system enables plants to sense the changes in the external environment and to modify the growth and development process at an appropriate time. Photoperiod-1 (Ppd-1), which is controlled by the output signal of the circadian clock, has played an important role in the wheat "Green Revolution." In the current study, we systematically studied the relationship between Ppd-1 haplotypes and both wheat yield- and quality-related traits, using genome-wide association analysis and transgenic strategies, and found that highly appropriate haplotypes had been selected in the wheat breeding programs. Genome-wide association analysis showed that Ppd-1 is associated with significant differences in yield-related traits in wheat, including spike length (SL), heading date (HD), plant height (PH), and thousand-grain weight (TGW). Ppd-1-Hapl-A1 showed increased SL by 4.72-5.93%, whereas Ppd-1-Hapl-B1 and Ppd-1-Hapl-D1 displayed earlier HD by 0.58-0.75 and 1.24-2.93%, respectively, decreased PH by 5.64-13.08 and 13.62-27.30%, respectively, and increased TGW by 4.89-10.94 and 11.12-21.45%, respectively. Furthermore, the constitutive expression of the Ppd-D1 gene in rice significantly delayed heading date and resulted in reduced plant height, thousand-grain weight, grain width (GW), and total protein content. With reference to 40years of data from Chinese wheat breeding, it was found that the appropriate haplotypes Ppd-1-Hapl-A1, Ppd-1-Hapl-B1, and Ppd-1-Hapl-D1 had all been subjected to directional selection, and that their distribution frequencies had increased from 26.09, 60.00, and 52.00% in landraces to 42.55, 93.62, and 96.23% in wheat cultivars developed in the 2010s. A Ppd-B1 methylation molecular marker was also developed to assist molecular wheat breeding. This research is of significance for fully exploring the function of the Ppd-1 gene and its genetic resource diversity, to effectively use the most appropriate haplotypes and to improve crop yield and sustainability.

13.
Plants (Basel) ; 10(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924695

RESUMO

Genetic improvement of root systems is an efficient approach to improve yield potential and nitrogen use efficiency (NUE) of crops. QMrl-7B was a major stable quantitative trait locus (QTL) controlling the maximum root length in wheat (Triticum aestivum L). Two types of near isogenic lines (A-NILs with superior and B-NILs with inferior alleles) were used to specify the effects of QMrl-7B on root, grain output and nitrogen-related traits under both low nitrogen (LN) and high nitrogen (HN) environments. Trials in two consecutive growing seasons showed that the root traits, including root length (RL), root area (RA) and root dry weight (RDW), of the A-NILs were higher than those of the B-NILs at seedling stage (SS) before winter, jointing stage (JS), 10 days post anthesis (PA10) and maturity (MS), respectively. Under the LN environment, in particular, all the root traits showed significant differences between the two types of NILs (p < 0.05). In contrast, there were no critical differences in aerial biomass and aerial N accumulation (ANA) between the two types of NILs at SS and JS stages. At PA10 stage, the aerial biomass and ANA of the A-NILs were significantly higher than those of the B-NILs under both LN and HN environments (p < 0.05). At MS stage, the A-NILs also exhibited significantly higher thousand-grain weight (TGW), plot grain yield, harvest index (HI), grain N accumulation (GNA), nitrogen harvest index (NHI) and nitrogen partial factor productivity (NPFP) than the B-NILs under the corresponding environments (p < 0.05). In summary, the QMrl-7B A-NILs manifested larger root systems compared to the B-NILs which is favorable to N uptake and accumulation, and eventually enhanced grain production. This research provides valuable information for genetic improvement of root traits and breeding elite wheat varieties with high yield potential and NPFP.

14.
Plant Physiol Biochem ; 160: 281-293, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33540331

RESUMO

Brassinosteroids (BRs) are a group of plant steroid hormones that regulate many important agronomic traits. Studies on the functional mechanisms of BR-related genes in crop plants are necessary for the application of BRs in agriculture. In this study, ZmD11, an ortholog of rice DWARF11 (D11), and 42 other BR biosynthesis-related genes were identified in maize (Zea mays). Complementary experiments confirmed that ZmD11 completely rescued the abnormal panicle architecture and plant height of the rice cpb1 mutant. A phylogenetic analysis indicated that ZmD11-like proteins were found in other monocots and dicots, but not in lower plants and that alternative splicing variants of these homologues mainly exist in Triticeae crops. A subcellular localization analysis showed that ZmD11 localized to the endoplasmic reticulum. The ZmD11 gene was predominantly expressed in young ears and seeds from 10 to 16 days after pollination, especially in the scutellar aleurone layer and pericarp. Furthermore, the constitutive expression of the ZmD11 gene significantly increased seed length, seed area, seed weight and both seed starch and protein contents in rice and maize. Our results suggest that ZmD11 is a key gene in the regulation of seed size and quality and that it has a potential application value in the molecular breeding of crops.


Assuntos
Brassinosteroides/biossíntese , Oryza/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Processamento Alternativo , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Filogenia , Proteínas de Plantas/fisiologia , Sementes/genética , Zea mays/fisiologia
15.
Front Plant Sci ; 11: 285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226438

RESUMO

Timing of flowering is crucial for the transformation from vegetative to reproductive growth in the important food crop, wheat (Triticum aestivum L.). The circadian clock is a central part of photoperiod regulation, with Pseudo-Response Regulators (PRRs) representing key components of circadian networks. However, little is known about the effects of PRR family members on yield-related traits in crop plants. In this study, we identified polymorphisms and haplotypes of TaPRR1, demonstrating that natural variations in TaPRR1 are associated with significant differences in yield-related traits including heading date, plant height and thousand grain weight. TaPRR1-6A-Hapla showed an earlier heading date, advanced by 0.9 to 1.7%. TaPRR1-6B-Hapla and TaPRR1-6D-Hapla displayed reduced plant height and increased thousand grain weight of up to 13.3 to 26.4% and 6.3 to 17.3%, respectively. Subcellular localization and transcriptional activity analysis showed that TaPRR1 is a nuclear localization protein with transcriptional activity controlled by an IR domain. The expression profiles of TaPRR1 genes over a 48-h period were characterized by circadian rhythms, which had two peaks under both short- and long- day conditions. In addition, geographical distribution analysis indicated higher distribution frequencies of TaPRR1-6A-Hapla, TaPRR1-6B-Haplb, and TaPRR1-6D-Haplb in different agro-ecological production zones. Furthermore, analysis of molecular variance of the distribution frequency of TaPRR1 haplotypes suggested significant differences in haplotype distribution frequency between landraces and modern cultivars. Our study provides a basis for in-depth understanding of TaPRR1 function on yield-related traits in wheat, as well as establishing theoretical guidance for wheat molecular marker-assisted breeding.

16.
Plant J ; 103(1): 279-292, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32073701

RESUMO

Plants produce numerous metabolites that are important for their development and growth. However, the genetic architecture of the wheat metabolome has not been well studied. Here, utilizing a high-density genetic map, we conducted a comprehensive metabolome study via widely targeted LC-MS/MS to analyze the wheat kernel metabolism. We further combined agronomic traits and dissected the genetic relationship between metabolites and agronomic traits. In total, 1260 metabolic features were detected. Using linkage analysis, 1005 metabolic quantitative trait loci (mQTLs) were found distributed unevenly across the genome. Twenty-four candidate genes were found to modulate the levels of different metabolites, of which two were functionally annotated by in vitro analysis to be involved in the synthesis and modification of flavonoids. Combining the correlation analysis of metabolite-agronomic traits with the co-localization of methylation quantitative trait locus (mQTL) and phenotypic QTL (pQTL), genetic relationships between the metabolites and agronomic traits were uncovered. For example, a candidate was identified using correlation and co-localization analysis that may manage auxin accumulation, thereby affecting number of grains per spike (NGPS). Furthermore, metabolomics data were used to predict the performance of wheat agronomic traits, with metabolites being found that provide strong predictive power for NGPS and plant height. This study used metabolomics and association analysis to better understand the genetic basis of the wheat metabolism which will ultimately assist in wheat breeding.


Assuntos
Grão Comestível/metabolismo , Característica Quantitativa Herdável , Triticum/metabolismo , Genes de Plantas/genética , Estudos de Associação Genética , Metabolômica , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Triticum/genética
17.
J Genet ; 982019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31544776

RESUMO

Genetic information of polymerase chain reaction (PCR)-based markers, one of the main tools of genetics and genomics research in wheat, have been well documented in wheat. However, the physical position in relation to these markers has not yet been systematically characterized. Aim of this study was to characterize the physical information of thousands of widely used molecular markers.We first assigned 2705 molecular markers to wheat physical map, of which 86.1% and 84.7% were the best hits to chromosome survey sequencing (CSS) project (CSS-contigs) and International Wheat Genome Sequencing Consortium Reference Sequence v1.0 (IWGSC RefSeq v1.0), respectively. Physical position of 96.2% markers were predicated based on BLAST analysis, were in accordance with that of the previous nullisomic/aneuploidy/linkage analysis. A suggestive high-density physical map with 4643 loci was constructed, spanning 14.01 Gb (82.4%) of the wheat genome, with 3.02 Mb between adjacent markers. Both forward and reverse primer sequences of 1166 markers had consistent best hits to IWGSC RefSeq v1.0 based on BLAST analysis, and the corresponding allele sizes were characterized. A detailed physical map with 1532 loci was released, spanning 13.93 Gb (81.9%) of the wheat genome, with 9.09 Mb between adjacent markers. Characteristic of recombination rates in different chromosomal regions was discussed. In addition, markers with multiple sites were aligned to homoeologous sites with a consistent order, confirming that a collinearity existed among A, B and D subgenomes. This study facilitates the integration of physical and genetical information of molecular markers, which could be of value for use in genetics and genomics research such as gene/QTL map-based cloning and marker-assisted selection.


Assuntos
Mapeamento Físico do Cromossomo , Triticum/genética , Ligação Genética , Marcadores Genéticos , Genoma de Planta , Reação em Cadeia da Polimerase , Recombinação Genética/genética
18.
Front Plant Sci ; 10: 187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863417

RESUMO

Optimal spike characteristics are critical in improving the sink capacity and yield potential of wheat even in harsh environments. However, the genetic basis of their response to nitrogen deficiency is still unclear. In this study, quantitative trait loci (QTL) for six spike-related traits, including heading date (HD), spike length (SL), spikelet number (SN), spike compactness (SC), fertile spikelet number (FSN), and sterile spikelet number (SSN), were detected under two different nitrogen (N) supplies, based on a high-density genetic linkage map constructed by PCR markers, DArTs, and Affymetrix Wheat 660 K SNP chips. A total of 157 traditional QTLand 54 conditional loci were detected by inclusive composite interval mapping, among which three completely low N-stress induced QTL for SN and FSN (qSn-1A.1, qFsn-1B, and qFsn-7D) were found to maintain the desired spikelet fertility and kernel numbers even under N deficiency through pyramiding elite alleles. Twenty-eight stable QTL showing significant differencet in QTL detection model were found and seven genomic regions (R2D, R4A, R4B, R5A, R7A, R7B, and R7D) clustered by these stable QTL were highlighted. Among them, the effect of R4B on controlling spike characteristics might be contributed from Rht-B1. R7A harboring three major stable QTL (qSn-7A.2, qSc-7A, and qFsn-7A.3) might be one of the valuable candidate regions for further genetic improvement. In addition, the R7A was found to show syntenic with R7B, indicating the possibly exsting homoeologous candidate genes in both regions. The SNP markers involved with the above highlighted regions will eventually facilitate positional cloning or marker-assisted selection for the optimal spike characteristics under various N input conditions.

19.
BMC Genet ; 20(1): 23, 2019 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-30819111

RESUMO

BACKGROUND: Common wheat (Triticum aestivum L.) is one of the most important food crops worldwide. Wheat spike-layer uniformity related traits (SLURTs) were complex traits that directly affect yield potential and appearance. In this study, quantitative trait locus (QTL) for five SLURTs among inter-tillers were first documented using a recombinant inbred line (RIL) mapping population derived from a cross between Kenong9204 and Jing411 (represented by KJ-RILs). Genetic relationships between SLURTs and yield were characterized in detail. RESULTS: The trait phenotypic performances for the 188 KJ-RILs and their parents were evaluated in eight different environments. The genetic data included in a high-density genetic map derived from the Affymetrix 660 K SNP Array and the corresponding genotypes in each lines. Of 99 putative additive QTL 11 were stable across environments and 57 showed significant additive-by-environment interaction effects. These QTL individually explained 1.05-39.62% of the phenotypic variance, with log of odds (LOD) values ranging from 2.00 to 34.01. Genetic relationships between SLURTs and yield indicated that plants with slight uneven spike spatial distribution should be an ideotype for super high-yield in wheat. CONCLUSIONS: The present study will provide assistance in understanding the genetic relationships between SLURTs and yield potential. The 11 stable QTL for SLURTs identified herein may facilitate breeding new wheat varieties with scientifically reasonable spike-layer distribution by marker assisted selection.


Assuntos
Locos de Características Quantitativas/genética , Triticum/anatomia & histologia , Triticum/genética , Cruzamento , Fenótipo , Triticum/crescimento & desenvolvimento
20.
Theor Appl Genet ; 131(12): 2677-2698, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30255337

RESUMO

KEY MESSAGE: QTL for a wheat ideotype root system and its plasticity to nitrogen deficiency were characterized. Root system architecture-related traits (RRTs) and their plasticity to nitrogen availability are important for nitrogen acquisition and yield formation in wheat (Triticum aestivum L.). In this study, quantitative trait loci (QTL) analysis was conducted under different nitrogen conditions, using the seedlings of 188 recombinant inbred lines derived from a cross between Kenong 9204 and Jing 411. Fifty-three QTL for seven RRTs and fourteen QTL for the plasticity of these RRTs to nitrogen deficiency were detected. Thirty of these QTL were mapped in nine clusters on chromosomes 2B, 2D, 3A, 3D, 6B, 6D, 7A and 7B. Six of these nine clusters were also colocated with loci for nitrogen use efficiency (NUE)-related traits (NRTs). Among them, three QTL clusters (C2B, C6D and C7B) were highlighted, considering that they individually harbored three stable robust QTL (i.e., QMrl-2B.1, QdRs-6D and QMrl-7B). C2B and C7B stably contributed to the optimal root system, and C6D greatly affected the plasticity of RRTs in response to nitrogen deficiency. However, strong artificial selection was only observed for C7B in 574 derivatives of Kenong 9204. Covariance analysis identified QMrl-7B as the major contributor in C7B that affected the investigated NRTs in mature plants. Phenotypic analysis indicated that thousand kernel weight might represent a "concomitant" above-ground trait of the "hidden" RRTs controlled by C7B, which are used for breeding selection. Dissecting these QTL regions with potential breeding value will ultimately facilitate the selection of donor lines with both high yield and NUE in wheat breeding programs.


Assuntos
Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Locos de Características Quantitativas , Triticum/genética , Fenótipo , Melhoramento Vegetal , Raízes de Plantas/genética , Plântula/genética , Plântula/metabolismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...